Home
Class 12
MATHS
Show that the planes ax+by+r=0,by +cz+p=...

Show that the planes `ax+by+r=0,by +cz+p=0` and `cz+ax+q=0` are prependicular to `xy,yz and zx` planes respectively.

Promotional Banner

Topper's Solved these Questions

  • PLANE

    CHHAYA PUBLICATION|Exercise EXERCISE 5 B|12 Videos
  • PLANE

    CHHAYA PUBLICATION|Exercise EXERCISE 5 B (Very Short question)|14 Videos
  • PLANE

    CHHAYA PUBLICATION|Exercise EXERCISE 5A (Vary Short answer Type question)|15 Videos
  • PERMUTATION AND COMBINATION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams E Assertion -Reason Type|2 Videos
  • PROBABILITY

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS|18 Videos

Similar Questions

Explore conceptually related problems

Show that a x+b y+r=0,b y+c z+p=0a n dc z+a x+q=0 are perpendicular to x-y ,y-za n dz-x planes, respectively.

Show that a x+b y+r=0,b y+c z+p=0a n dc z+a x+q=0 are perpendicular to x-y ,y-za n dz-x planes, respectively.

Show that the plane ax + by + cz + d = 0 divides, the line segment joining the points (x_1, y_1, z_1) and (x_2, y_2, z_2) in the- ratio -(ax_1+by_1+cz_1+d)/(ax_2+by_2+cz_2+d) .

Show that the lines ax+by+c=0, ax-by+c=0, ax-by=c ax+ by-c=0 (a ne b) enclose a rhombus whose area is (2c^(2))/(ab) sq unit.

If the quadrilateral formed by the lines ax + by + c = 0, a'x + b'y + c' = 0, ax + by + c' = 0,a'x + b'y + c = 0 have perpendicular diagonals, then :

From a points P(a,b,c) prependiculars PL,PM and PN are drown to xy,yz and zx planes. Find the equation of the plane passing through L,M and N.

Find the equation of the plane which constant the line of intesection of the planes vecr.( hati+2 hatj+3 hatk)-4=0 and vecr.( 2 hati+ hatj-hatk)=0 and which is prependicular to the plane vecr.(5 hati+3 hatj-6 hatk)+8=0.

The equation of the plane through the line of intersection of the planes ax + by+cz + d= 0 and a'x + b'y+c'z + d'= 0 parallel to the line y=0 and z=0 is

If from a point P(a, b, c), perpendiculars PA and PB are drawn to YZ and ZX-planes respectively, then the equation of the plane OAB is

Show that the plane ax+by+ca+d=0 divides the line joining the points (x_1,y_1,z_1) & (x_2,y_2,z_2) in the ratio - (ax_1+by_1+cz_1+d_1)/(ax_2+by_2+cz_2+d_2)