Home
Class 11
MATHS
Ifalpha and beta be the eccentric angles...

If`alpha and beta` be the eccentric angles of the extremities of a focal chord of the hyperbola `b^(2)x^(2) - a^(2)y^(2) = a^(2)b^(2)`, show that, `tan(alpha)/(2)tan(beta)/(2) = -(e-1)/(e+1)`, `(e-1)/(e+1)` (e is the eccentricity of the hyperbola.).

Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS|12 Videos
  • HYPERBOLA

    CHHAYA PUBLICATION|Exercise SHORT ANSWER TYPE QUESTIONS|37 Videos
  • DIAGRAMMATIC REPRESENTATION OF DATA

    CHHAYA PUBLICATION|Exercise EXERCISE (Very short Answer Type Question)|7 Videos
  • MATHEMATICAL INDUCTION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams|20 Videos

Similar Questions

Explore conceptually related problems

If theta and phi are the eccentric angles of the end points of a chord which passes through the focus .of an ellipse x^2/a^2+y^2/b^2=1 .Show that tan(0//2)tan(phi//2)=((e-1)/(e+1)) ,where e is the eccentricity of the ellipse.

If alpha and beta are the eccentric angles of the extremities of a focal chord of an ellipse, then prove that the eccentricity of the ellipse is (sinalpha+sinbeta)/("sin"(alpha+beta))

the eccentricity of the hyperbola (x^(2))/(16)-(y^(2))/(25)=1 is

If e is the eccentricity of the hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2)) = 1 , then e =

Show that the midpoints of focal chords of a hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 lie on another similar hyperbola.

If e_1 is the eccentricity of the hyperbola (y^(2))/(b^(2)) - (x^(2))/(a^(2)) = 1 then e_(1) =

If P Q is a double ordinate of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 such that O P Q is an equilateral triangle, O being the center of the hyperbola, then find the range of the eccentricity e of the hyperbola.

If PQ is a double ordinate of the hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2)) = 1 such that Delta OPQ is equilateral, O being the centre. Then the eccentricity e satisfies

If e_(1) and e_(2) be the eccentricities of the hyperbolas 9x^(2) - 16y^(2) = 576 and 9x^(2) - 16y^(2) = 144 respectively, then -

If the chords of contact of tangents from two points (-4,2) and (2,1) to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 are at right angle, then find then find the eccentricity of the hyperbola.