Home
Class 12
MATHS
If S=sum(n=2)^oo(3n^2+1)/((n^2-1)^3) th...

If `S=sum_(n=2)^oo(3n^2+1)/((n^2-1)^3)` then `9/(4S)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If S=sum_(n=2)^oo (3n^2+1)/(n^2-1)^3 then 9/S=

If S=sum_(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

p=sum_(n=0)^(oo) (x^(3n))/((3n)!) , q=sum_(n=1)^(oo) (x^(3n-2))/((3n-2)!), r = sum_(n=1)^(oo) (x^(3n-1))/((3n-1)!) then p + q + r =

sum_(0)^(oo)(1)/((3n+1)(3n+2))

Let S_1 = 4+6/3+8/3^2+10/3^3+...+oo and S_2 =sum_(n=1)^oo 1/((3n+1)(3n+4)), then the value of the S_1/(10 S_2) is

If S_(n) = sum_(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S_(10) is less then

If S_(n) = sum_(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S_(10) is less then