Home
Class 11
MATHS
Prove that cosx+cos((2pi)/3 - x)+cos((2p...

Prove that `cosx+cos((2pi)/3 - x)+cos((2pi)/3+x)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(3)x+cos^(3)((2pi)/3+x)+cos^(3)((2pi)/3-x)=3/4 cos 3x

The sum of the solutions in (0, 2pi) of the equation cos x cos ((pi)/(3)-x)cos((pi)/(3)+x)=(1)/(4) is

Prove that cos ( ( 3pi )/(2) + x) ) cos (2pi+x) .[ cot ((3pi )/( 2) - x) ) + cot (2pi +x) ]=1

Prove that : cos((pi)/4+x)+cos((pi)/4-x)=sqrt(2)cosx

Prove that cos ((3pi)/(4)+x)-cos ((3pi)/(4)-x)=-sqrt2 sin x

The extreme values of cos x cos((2pi)/(3)+x)cos((2pi)/(3)-x) is

Prove that cos^2x+cos^2(x+pi/3)+cos^2(x-pi/3)=3/2 .

Prove that: cos((3pi)/2+x)cos(2pi+x)[cot((3pi)/2-x)+cot(2pi+x)]=1

Prove that: cos((3pi)/2+x)cos(2pi+x){cot((3pi)/2-x)+"cot"(2pi+x)}=1