Home
Class 12
MATHS
Prove The following: "cos"(sin^(-1)\ 3/5...

Prove The following: `"cos"(sin^(-1)\ 3/5+cot^(-1)\ 3/2)=6/(5\ sqrt(13))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Directions (Q. Nos. 16-25) Prove the following "cos"["sin"^(-1)(3/(5))+"cot"^(-1)(3/(2))]=6/(5sqrt(13)) .

Prove the following : cos(sin^-13/5 + cot^-13/2) = 6/(5sqrt13)

cos(sin^-1 (3/5)+ cot^-1(3/2)) = 6/(5sqrt13)

tan(sin^(-1)((3)/(5))+cos^(-1)((3)/(sqrt(13)))=

Prove that cos(sin^(-1)((3)/(5)) +cot^(-1)((3)/(2))) =(6)/(5sqrt(13))

Find cos(sin^(-1)3/5+sin^(-1)5/13)

Prove that cos(sin^-1(3/5) + cot^-1(3/2)) = 6/(5sqrt13)

Prove the following : "sin"^(-1)3/5+"cos"^(-1)4/5=cot^(-1)(7/24)

Prove the following : "sin"^(-1)4/5+"sin"^(-1)5/13="cos"^(-1)16/65

Prove the following : cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)