Home
Class 10
MATHS
In the adjoining figure bisectors of an...

In the adjoining figure bisectors of `angleBand angleC` intersect each other in point X. Line AX intersects side BC in point Y. `AB=5, AC=4, BC=6 "then find" (AX)/(XY)`.

Text Solution

Verified by Experts

The correct Answer is:
`(AX)/(XY)=(3)/(2)`
Promotional Banner

Topper's Solved these Questions

  • SIMILARITY

    CHETAN PUBLICATION|Exercise Problem Set - 1 (MCQs)|16 Videos
  • SIMILARITY

    CHETAN PUBLICATION|Exercise PROBLEMS FOR PRACTICE|30 Videos
  • SIMILARITY

    CHETAN PUBLICATION|Exercise Practice Set - 1.4|7 Videos
  • QUADRATIC EQUATIONS

    CHETAN PUBLICATION|Exercise ASSIGNMENT|12 Videos
  • STANDARD IX SYLLABUS

    CHETAN PUBLICATION|Exercise PROBLEMS FOR PRACTICE|20 Videos

Similar Questions

Explore conceptually related problems

Bisector of angleB" and "angle C " in "DeltaABC meet each other at P. Line Ap cuts the side BC at Q. Then prove that : (AP)/(PQ)=(AB+BC)/(BC)

In the adjacent figure lines PQ and RS intersect each other at point O. If anglePOR : angleROQ = 5: 7, find all the angles.

In the adjoining figure line PA is a tangent to the circle at point A . Secant PQZ intersects chord AY in point X, such that AP = PX = XY. If PQ = 1 and QZ = 8 . Find AX.

In the adjoining figure, two circles intersect each other at points A and E . Their common secant through E intersects the circle at points B and D . The tangents of the circles at point B and D intersect each other at point C . Prove that squareABCD is cyclic .

In the adjoining figure, two circles intersect each other at points M and N . Secants drawn from points M and N intersect cirecls at point R, S, P and Q as shown in the figure.

In the adjoint figure, AD is the bisector of the exterior angleA" of "DeltaABC. Seg AD intersects the side BC produced in D. Prove that : (BD)/(CD)=(AB)/(AC)

In the adjoining figure line PA is tangent at point A . Line PBC is a secant . If AP = 15 and BP = 10 , find BC.

In the adjoining figure, chord AC and and chord DE intersect at point B . If angleABE=108^(@) and m(arc AE) =95^(@) , then find m(arc DC).

In the adjoining figure,seg AB is a diameter of a circle with centre O . Bisector of inscribed angleACB intersects circle at point D. Complete the following proof by filling in the blanks. Prove that : seg AD ~= seg BD

In squareABCD, "seg " AD||"seg " BC. Diagonal AC and diagonal BC intersect each other in point P. Then show that (AP)/(PD)=(PC)/(BP)