Home
Class 10
MATHS
Prove that: cos^2 theta (1 + tan^2 the...

Prove that: `cos^2 theta (1 + tan^2 theta) = 1 `

Text Solution

Verified by Experts

The correct Answer is:
`therefore" " cos^2(1 + tan^2theta) = 1`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    CHETAN PUBLICATION|Exercise MASTER KEY QUESTION SET-6 PRACTICE SET -6.2|7 Videos
  • TRIGONOMETRY

    CHETAN PUBLICATION|Exercise PROBLEM SET -6|18 Videos
  • STATISTICS

    CHETAN PUBLICATION|Exercise ASSIGNMENT -6|12 Videos

Similar Questions

Explore conceptually related problems

Prove: cos^2 theta + 1/(1 + cot^2 theta) = 1

Prove the following: cot^2 theta - tan^2 theta = cosec^2 theta - sec^2 theta

Prove that 1 + ( cot^(2) theta)/(1 + cos ec theta) = cosec theta

Prove that : (2 cos 2^n theta + 1)/(2 cos theta +1) = (2 cos theta -1) (2 cos 2theta -1) (2 cos 2^2 theta -1) … (2 cos 2^(n-1) theta -1)

Prove that cot theta-tan theta=2cot 2 theta .

Prove that (2 cos 2 theta+1)/(2 cos 2theta-1)=tan(60^@+theta) (tan 60^@-theta)

Prove that (sin theta -cos theta+1 )/( sin theta + cos theta -1) =(1)/( sec theta -tan theta ) [use the identity sec ^(2) theta =1 +tan ^(2) theta ]

Prove that sin^(4) theta + cos^(4) theta = 1 - 2 sin^2 theta cos^(2) theta

Prove: (1 + cot^2 theta) (1 + cos theta)(1-cos theta) = 1

Prove than: sec theta + tan theta = (cos theta )/(1 - sin theta)