Home
Class 10
MATHS
Prove that: sqrt(1-sintheta)/sqrt(1+si...

Prove that:
`sqrt(1-sintheta)/sqrt(1+sintheta) = sec theta - tan theta`

Text Solution

Verified by Experts

The correct Answer is:
`sqrt(1-sintheta)/sqrt(1+sintheta) = sec theta - tan theta`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    CHETAN PUBLICATION|Exercise MASTER KEY QUESTION SET-6 PRACTICE SET -6.2|7 Videos
  • TRIGONOMETRY

    CHETAN PUBLICATION|Exercise PROBLEM SET -6|18 Videos
  • STATISTICS

    CHETAN PUBLICATION|Exercise ASSIGNMENT -6|12 Videos

Similar Questions

Explore conceptually related problems

Prove: (cos theta)/(1+sin theta) = sec theta - tan theta

Prove the identitie (cos theta)/(1+ sin theta) = sec theta - tan theta

Prove that (cos theta-sintheta)/(cos theta+sintheta)=sec 2 theta-tan 2theta .

Prove that following identities sqrt((1+sintheta)/(1-sintheta))=sectheta+tantheta

sqrt((1+sintheta)/(1-sintheta))=sectheta+x. Then x is:

Prove that (1+sintheta)/costheta+costheta/(1+sintheta)=2sectheta

Prove: sec theta + tan theta = 1/(sec theta - tan theta)

If 0 leq theta leq pi and sin(theta/2)=sqrt(1+sintheta)-sqrt(1-sintheta) ,then the possible value of tan theta , is -

Prove that sqrt((sec theta -1)/( sec theta +1))=(1- cos theta )/( sin theta )