Home
Class 10
MATHS
Prove that: sin^4 theta - cos^4 theta=...

Prove that:
`sin^4 theta - cos^4 theta= 1-2 cos^2 theta`.

Text Solution

Verified by Experts

The correct Answer is:
`sin^4 theta-cos^4 theta = 1 -2cos^2 theta`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    CHETAN PUBLICATION|Exercise MASTER KEY QUESTION SET-6 PRACTICE SET -6.2|7 Videos
  • TRIGONOMETRY

    CHETAN PUBLICATION|Exercise PROBLEM SET -6|18 Videos
  • STATISTICS

    CHETAN PUBLICATION|Exercise ASSIGNMENT -6|12 Videos

Similar Questions

Explore conceptually related problems

Prove: sin^4 theta - cos^4theta = 1 - 2cos^2 theta

Prove that sin^(4) theta + cos^(4) theta = 1 - 2 sin^2 theta cos^(2) theta

Prove that ((1+sin theta- cos theta)/(1+sin theta+costheta))^2=(1-cos theta)/(1+cos theta)

Prove that cos 8 theta cos 2 theta = cos^(2) 5theta- sin^(2) 3 theta

Solve the equations: sin 2theta - cos 2 theta - sin theta + cos theta = 0

Prove that (sin theta+sin 2theta)/(1+cos theta+cos 2 theta)=tan theta

Prove that (sin theta -cos theta+1 )/( sin theta + cos theta -1) =(1)/( sec theta -tan theta ) [use the identity sec ^(2) theta =1 +tan ^(2) theta ]

Solve sin 3 theta-sin theta=4 cos^(2) theta-2 .

Prove that: (sin2theta)/(1-cos2theta)=cottheta