Home
Class 10
MATHS
Prove that: sec^4A(1-sin^4A) -2 tan^2A...

Prove that:
`sec^4A(1-sin^4A) -2 tan^2A=1`.

Text Solution

Verified by Experts

The correct Answer is:
`sec^4 A (1-sin^4A) -2 tan^2 A = 1`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    CHETAN PUBLICATION|Exercise MASTER KEY QUESTION SET-6 PRACTICE SET -6.2|7 Videos
  • TRIGONOMETRY

    CHETAN PUBLICATION|Exercise PROBLEM SET -6|18 Videos
  • STATISTICS

    CHETAN PUBLICATION|Exercise ASSIGNMENT -6|12 Videos

Similar Questions

Explore conceptually related problems

Prove that sec A(1-sin A)(secA+tanA)=1 .

Prove that (1-tan^2(pi/4-A))/(1+tan^2(pi/4-A))=sin2Adot

Prove that ( 1+ sec A)/( sec A) =(sin ^(2) A)/( 1-cos A)

Prove that (cosec A - sin A ) (sec A -cos A) = ( 1)/( tan A +cot A)

Prove that following identities sec^(4)theta(1-sin^(4)theta)-2tan^(2)theta=1

Prove that (sin A)/(sec A + tan A -1)+ (cos A)/("cosec "A +cot A-1)=1

Prove that (sin (4A - 2B) + sin (4B - 2A))/(cos (4A - 2B) + cos (4B - 2A)) = tan (A + B)

If (cos^4A)/(cos^2B)+(sin^4A)/(sin^2B)=1 then prove that (i)sin^4A+sin^4B=2sin^2Asin^2B (ii)(cos^4B)/(cos^2A)+(sin^4B)/(sin^2A)=1

Prove that : tan^(-1) (1/2 ) + tan^(-1) (1/3) = pi/4