The equation of a straight line which passes through the point ( a cos^(3)theta, a sin^(3)theta ) and perpendicular to x sec theta + y cosec theta = a
Prove: (cos^2theta)/(1-tan theta) + (sin^3 theta)/(sin theta - cos theta ) = 1 + sin theta cos theta
If sin theta + cos theta theta = sqrt(2) cos theta then cos theta - sin theta is
Prove the following: (sin theta - cos theta + 1 )/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)
Solve the equations: sin 2theta - cos 2 theta - sin theta + cos theta = 0
the solution of sin ^3 theta cos theta - sin theta cos^3 theta = 1/4 is
The inverse of A=[[cos theta, sin theta],[-sin theta,cos theta]] is :