Home
Class 12
MATHS
Obtain reduction formula for If I(n)...

Obtain reduction formula for
If ` I_(n)=int (log x) ^(n)dx,` then show that
`I_(n) =x (log x)^(n) -nI_(n-1),` and hence field ` int (log x) ^(4) dx.`

Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise DAM SURE VSAQ - 2 MARKS|20 Videos
  • INTEGRATION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise DAM SURE SAQ- 4 MARKS|8 Videos
  • INTEGRATION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise TEXTUAL EXERCISE -6E|18 Videos
  • HYPERBOLA

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise SAQ|2 Videos
  • MEASURES OF DISPERSION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE|9 Videos

Similar Questions

Explore conceptually related problems

int (log x)^(5)dx=

If I_(n) = int(logx)^(n) dx then prove that I_(n) = x(logx)^(n) - nI_(n-1) and hence evaluate int(log x)^(4) dx

int (log x )^(3) dx =

If I_(n) = int (log x)^(n) dx then I_(6) + 6I_(5) =

If I_(n)= int (log x)^(n)dx then I_(n)+nI_(n-1)=

int log x dx=

If I_(n)= int_(1)^(e) (log x)^(n) dx then I_(8) + 8I_(7)=

If I_(m,n)=int x^(m)(logx)^(n)dx then I_(m.n)=