Home
Class 10
MATHS
The function f:[0,1]rarr R is continuous...

The function `f:[0,1]rarr R` is continuous on `[0,1]` and `int_(0)^(x)f(t)dt=int_(x)^(1)f(t)dt`. Prove that `f(x)=0` for all `x in[0,1]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

If int_(0)^(1) f(t)dt=x^2+int_(0)^(1) t^2f(t)dt , then f'(1/2)is

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

If int_(0)^(x) f(t)dt=x+int_(x)^(1)t f(t)dt , find the value of f(1).

If int_(0)^(x)f(t)dt=x^2+int_(x)^(1)t^2f(t)dt , then f((1)/(2)) is equal to