Home
Class 12
MATHS
Show that lim(x->2) [1/(x-2) - 1/(x^2 - ...

Show that `lim_(x->2) [1/(x-2) - 1/(x^2 - 3x + 2)]` = `

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0) (x^2-3x+1)/(x-1)

Show that : lim_(x rarr1)(2x-1)=1

[lim_(x->2) (3x + 1)]^2

Show that : lim_(xto0)[(1)/(x)-(log(1+x))/(x^(2))]=(1)/(2)

Evaluate lim_(x to 2) [(1)/(x - 2) - (2(2x - 3))/(x^(3) - 3x^(2) + 2x)]

Evaluate lim_(x to 2) [(1)/(x - 2) - (2(2x - 3))/(x^(3) - 3x^(2) + 2x)]

Evaluate the following limits: Show that lim_(x to 0)((1)/(x^(2))-(1)/(sin^(2)x))=(-1)/(3)

show that lim_(x rarr1)[2x+3]=5

lim_(x->1)(x^4-3x^2+2)/(x^3-5x^2+3x+1)

What is lim_(x to -1) (x^3 + x^2)/(x^2 + 3x + 2) equal to ?