Home
Class 12
MATHS
If f(x)=sec^(2)x then (1+tan A*tan B)^(2...

If `f(x)=sec^(2)x` then `(1+tan A*tan B)^(2)+(tan A-tan B)^(2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If : f(x)=sec^(2)x, lt br gt then : (1+tan A *tanB)^(2)+(tan A-tanB)^(2)=

Prove the following identities: (1+tan A tan B)^(2)+(tan A-tan B)^(2)=sec^(2)A sec^(2)B(tan A+csc B)^(2)-(cot B-sec A)^(2)=2tan A cot B(csc A+sec B)

(sec A sec B+tan A tan B)^(2)-(sec A tan B+tan A sec B)^(2)=1

(sec A sec B+tan A tan B)^(2)-(sec A tan B+tan A sec B)^(2)=1

If A+B=(pi)/(2)rArr Tan A Tan B=1 , rArr Tan(A-B)=(tan A-tan B)/(1+tan A tan B)=(tan A-tan B)/(2) , rArr tan A=tan B+2tan(A-B) , x= Tan""(5 pi)/(28)+2Tan""(pi)/(7) Then x

Prove the following identity: (sec A sec B+tan A tan B)^(2)-(sec A tan B+tan A sec B)^(2)=1

If A+B=(pi)/(2)rArr Tan A Tan B=1 , rArr Tan(A-B)=(tan A-tan B)/(1+tan A tan B)=(tan A-tan B)/(2) , rArr tan A=tan B+2tan(A-B) , (tan40^(@)+2tan10^(@))*(tan70^(@)-Tan20^(@))=

Prove that (tan A-tan B)^(2)+(1+tan A tan B)^(2)=sec^(2)A sec^(2)B

sec^(2)A tan^(2) B-tan^(2)A sec^(2) B=

If sec x+sec^(2)x=1 then the value of tan^(8)x-tan^(4)x-2tan^(2)x+1 will be equal to 0(b)1(c)2(d)3