Home
Class 14
MATHS
x(e^(2y)-1)dy+(x^(2)-1)e^(y)dx=0...

x(e^(2y)-1)dy+(x^(2)-1)e^(y)dx=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : (1+e^(2x))dy+(1+y^(2))e^(x)dx=0 when y(0)=1

(1+e^(2x))dy+e^(x)(1+y^(2))dx=0 it being given that y=1 when x=0

If y=x^(2)e^(x),"show that "(d^(2)y)/(dx^(2))-(dy)/(dx)-2(x+1)e^(x)=0

If y satisfies (dy)/(dx)=(e^(y))/(x^(2))-(1)/(x) and y(1)=0 then the value of e^(y(2)) is

IF y=e^(tan^(-1)x) then prove that : (1+x^(2))(d^2y)/(dx^2)+(2x-1)(dy)/(dx)=0 .

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

For each of the following initial value problems verify that the accompanying functions is a solution. (i) x(dy)/(dx)=1, y(1)=0 => y=logx (ii) (dy)/(dx)=y , y(0)=1 => y=e^x (iii) (d^2y)/(dx^2)+y=0, y(0)=0, y^(prime)(0)=1 => y=sinx (iv) (d^2y)/(dx^2)-(dy)/(dx)=0, y(0)=2, y^(prime)(0)=1 => y=e^x+1 (v) (dy)/(dx)+y=2, y(0)=3 => y=e^(-x)+2