Home
Class 12
MATHS
" If "alpha,beta& gamma" are the roots o...

" If "alpha,beta& gamma" are the roots of the equation "x^(3)+px+q=0" .then the value of the determinant "

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta & gamma are the roots the equations x^(3)+px+q=0 then the value of the determinant [{:(,alpha,beta,gamma),(,beta,gamma,alpha),(,gamma,alpha,beta):}]

If alpha,beta& gamma are the roots of the equation x^(3)+px+q=0, then the value of the det[[alpha,beta,gammabeta,gamma,alphagamma,alpha,beta]] is

If alpha , beta , gamma are roots of the equation x^(2)(px+q)=r(x+1) , then the value of determinant |{:(1+alpha,1,1),(1, 1+beta,1),(1,1,1+gamma):}| is

If alpha , beta , gamma are roots of the equation x^(2)(px+q)=r(x+1) , then the value of determinant |{:(1+alpha,1,1),(1, 1+beta,1),(1,1,1+gamma):}| is

If alpha , beta , gamma are the roots of the equation px^3 - qx + r = 0 , then the value of alpha + beta + gamma is

If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0, then the value of (alpha-(1)/(beta gamma))(beta-(1)/(gamma alpha))(gamma-(1)/(alpha beta)) is

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of (alphabeta)/(gamma)+(betagamma)/(alpha)+(gammaalpha)/(beta) is equal to

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of (alphabeta)/(gamma)+(betagamma)/(alpha)+(gammaalpha)/(beta) is equal to