Similar Questions
Explore conceptually related problems
Recommended Questions
- ^nC(0)-^(n)C(1)+^(n)C(2)-^(n)C(3)+...+(-1)^(r)*^(n)C(r)=28," then "n" ...
Text Solution
|
- Prove that "^n Cr+^(n-1)Cr+...+^r Cr=^(n+1)C(r+1) .
Text Solution
|
- Property:- (i) nCr=nC(n-r) (ii) (nCr)/(r+1)=((n+1)C(r+1))/(n+1)
Text Solution
|
- ^n Cr :^n C(r+1)=1:2and^n C(r+1):^n C(r+2)=2:3,f i n dnandr
Text Solution
|
- Prove that .^(n)C(0) - .^(n)C(1) + .^(n)C(2) - .^(n)C(3) + "……" + (-...
Text Solution
|
- If "^(n)C(0)-^(n)C(1)+^(n)C(2)-^(n)C(3)+...+(-1)^(r )*^(n)C(r )=28 , t...
Text Solution
|
- If (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r),(1 + (C(1))/(C(0))) (1 + (C(...
Text Solution
|
- |(.^(n-1)C(r-1),.^(n-1)C(r),.^(n-1)C(r+1)),(.^(n-1)C(r),.^(n-1)C(r+1),...
Text Solution
|
- Prove that .^(n)C(0) - .^(n)C(1) + .^(n)C(2) - .^(n)C(3) + "……" + (-...
Text Solution
|