Home
Class 13
MATHS
[" 2be complax numer "3+|z|=4," arg "(2)...

[" 2be complax numer "3+|z|=4," arg "(2)=(5 pi)/(6)," sken "],[z=?" o) "-2sqrt(3)+2" i "quad " ? "2sqrt(3)+2i" ( "0" ) "2sqrt(3)-2i" dom "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If z is a complex number such that |z|=4 and arg(z)=(5 pi)/(6), then z is equal to -2sqrt(3)+2i b.2sqrt(3)+i c.2sqrt(3)-2i d.-sqrt(3)+i

If z is a complex number such that |z|=4 and a r g(z)=(5pi)/6 , then z is equal to -2sqrt(3)+2i b. 2sqrt(3)+i c. 2sqrt(3)-2i d. -sqrt(3)+i

If z is a complex number such that |z|=4 and a r g(z)=(5pi)/6 , then z is equal to -2sqrt(3)+2i b. 2sqrt(3)+i c. 2sqrt(3)-2i d. -sqrt(3)+i

If z(2-2 sqrt(3) i)^(2)=i(sqrt(3)+i)^(4) then arg z=

If z(2-2sqrt(3i))^(2)=i(sqrt(3)+i)^(4), then arg(z)=

Area bounded by arg (z)=(pi)/(3), Arg (z)=(2 pi)/(3) and Arg(z-2-i2sqrt(3))=pi in the complex plane is (in square unit) 2sqrt(3)(b)4sqrt(3)(c)sqrt(3) (d) None of these

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

Number of z, which satisfy Arg(z-3-2i)=(pi)/(6) and Arg(z-3-4i)=(2 pi)/(3) is/are :