Home
Class 12
MATHS
let vec b = 4 hat i + 3 hat jLet vec c b...

let `vec b = 4 hat i + 3 hat j`Let `vec c` be a vector perpendicular to `vec b` and it lies in the XY-Plane. A vector on the XY-Plane having projections 1 and 2 along `vec b` and `vec c` is

Promotional Banner

Similar Questions

Explore conceptually related problems

let vec a=hat i+hat j-hat k and vec b=hat i-hat j-hat k and vec c be a unit vector perpendicular to vec a and coplanarwith vec a and vec b then vec c is

If veca = 2 hat i + 3 hat j - hat k , vec b = hat i + 2 hat j - 5 hat k, vec c= hat 3i + 5 hatj = hat k , then a vector perpendicular to vec a and in the plane containing vec b and vec c is

Given vec a = 4 hat i - hat j + 3 hat k and vec b = -2 hat i + hat j - 2 hat k . (i) Find a unit vector perpendicular to both vec a and vec b . (ii) Find a vector of magnitude 9 which is perpendicular to both vec a and vec b .

let vec a = 2hat i +3hat j and vec b = hat i +4hat j then find projection of vec a on vec b

let vec a = 2hat i +3hat j and vec b = hat i +4hat j then find projection of vec a on vec b

let vec a = 2hat i +3hat j and vec b = hat i +4hat j then find projection of vec a on vec b

If vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=hat(i)+2hat(j)-5hat(k),vec(c)=3hat(i)+5hat(j)-hat(k), then a vector perpendicular to vec(a) and lies in the plane containing vec(b)andvec(c) is

Consider the vectors vec a = hat i + 2 hat j - 3 hat k and vec b = 4 hat i - hat j + 2 hat k . (i) Find |vec a| and |vec b| . (ii) Find vec a. vec b (iii) Find the projections of vec a on vec b and vec b on vec a .

Let vec a = a_1 hat i + a_2 hat j+ a_3 hat k;vec b = b_1 hat i+ b_2 hat j+ b_3 hat k ; vec c= c_1hat i + c_2 hat j+ c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec a & vec b. If the angle between vec a and vec b is pi/6 , then |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|^2=

Let vec a = a_1 hat i + a_2 hat j+ a_3 hat k;vec b = b_1 hat i+ b_2 hat j+ b_3 hat k ; vec c= c_1hat i + c_2 hat j+ c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec a & vec b . If the angle between vec a and vec b is pi/6 , then |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|^2=