Home
Class 11
MATHS
[" (i) "1+C(3,1)+C(4,2)=C(5,3)],[" (ii) ...

[" (i) "1+C(3,1)+C(4,2)=C(5,3)],[" (ii) "C(2,1)+C(3,1)+C(4,1)=C(3,2)+C(4,2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1,2,-3),(5,0,2),(1,-1,1)] , B=[(3,-1,2),(4,2,5),(2,0,3)] and C=[(4,1,2),(0,3,2),(1,-2,3)] thern compute (A+B) and (B-C). Also verify A+(B-C)=(A+B)-C.

In C^(1) H_(3) C^(2) -= C^(3) - C^(4) H_(2) - C^(5)H = C^(6) H_(2) , hybridisation state of carbon number 1 , 3 and 5 are respectively -

If {[(5,1,4),(7,6,2),(1,3,5)][(1,6,-7),(6,2,4),(-7,4,3)][(5,7,1),(1,6,3),(4,2,5)]}^(2020)=[(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))] , then the value of 2|a_(2)-b_(1)|+3|a_(3)-c_(1)|+4|b_(3)-c_(2)| is equal to

If {[(5,1,4),(7,6,2),(1,3,5)][(1,6,-7),(6,2,4),(-7,4,3)][(5,7,1),(1,6,3),(4,2,5)]}^(2020)=[(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))] , then the value of 2|a_(2)-b_(1)|+3|a_(3)-c_(1)|+4|b_(3)-c_(2)| is equal to

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If A=[(1,2,-3),(5,0,2),(1,-1,1)],B=[(3,-1,2),(4,2,5),(2,0,3)] and C=[(4,1,2),(0,3,2),(1,-2,3)] , then compute (A+B) and (B-C) . Also, verify that A+(B-C)=(A+B)-C .

If A=[(1,2,-3),(5,0,2),(1,-1,1)],B=[(3,-1,2),(4,2,5),(2,0,3)] and C=[(4,1,2),(0,3,2),(1,-2,3)] , then compute (A+B) and (B-C) . Also, verify that A+(B-C)=(A+B)-C .