Home
Class 11
MATHS
2cos^(-1)5+cos^(-1)7+2cot^(-1)8=(pi)/(4)...

2cos^(-1)5+cos^(-1)7+2cot^(-1)8=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

2cot^(-1)5+cot^(-1)7+2cot^(-1)8=(pi)/(4)

Prove that 2cot^(-1)5+ cot^(-1)7 + 2cot^(-1)8 =pi/4

2cot^(- 1)5+cot^(- 1)7+2cot^(- 1)8=pi/4

2 cot ^(-1) 5+cot ^(-1) 7 + 2 cot ^(-1) 8=(pi)/(4)

2tan^(-1)(-2) is equal to (a) -cos^(-1)((-3)/5) (b) -pi+cos^(-1)3/5 (c) -pi/2+tan^(-1)(-3/4) (d) -pi+cot^(-1)(-3/4)

cos(cos^(-1)cos((8 pi)/(7))+tan^(-1)tan(8(pi)/(7))) has the value equal to -

cos^(-1)((3)/(5))+cos^(-1)((4)/(5))=(pi)/(2)

2 cot ^(-1) 7+ cos ^(-1) ((3)/(5)) is equal to -

The value of (1)/(pi){216sin^(-1)(sin(7 pi/6))+27cos^(-1)(cos(2 pi/3))+28tan^(-1)(tan(5 pi/4))+200cot^(-1)(cot(-(pi/4)))} must be Q

cos (cos^-1 cos((8pi)/7) +tan^-1 tan(8pi/7)) has the value equal to -