Home
Class 12
MATHS
[a(1),a(2),----a(49)" SUCh that "sum(K=0...

[a_(1),a_(2),----a_(49)" SUCh that "sum_(K=0)^(12)a_(4K+1)=416],[a_(9)+a_(43)=66" If "a_(1)^(2)+a_(2)^(2)+a_(3)^(2)+---+a_(17)^(2)=140m" then "m=-]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_(1),a_(2),a_(3)...a_(49) be in AP such that sum_(k=0)^(12)(a_(4)k+1)=416 and a_(9)+a_(43)=66 If a_(1)^(2)+a_(2)^(2)+...+a_(17)^(2)=140m then m is equal to (1)66(2)68(3) 34(4)33

Let a_(1), a_(2), a_(3),...,a_(49) be in AP such that sum_(k=0)^(12) a_(4k +1) = 416 and a_(9) + a_(43) = 66 . If a_(1)^(2) + a_(2)^(2) + ...+ a_(17)^(2) = 140m , then m is equal to

Suppose a_(1), a_(2), a_(3),…., a_(49) are in A.P and underset(k=0)overset(12)Sigma a_(4k+1)= 416 and a_(9) + a_(43)= 66 . If a_(1)^(2) + a_(2)^(2)+ ….+ a_(17)^(2)= 140m then m= ……..

Let a_1,a_2,a_3…., a_49 be in A.P . Such that Sigma_(k=0)^(12) a_(4k+1)=416 and a_9+a_(43)=66 .If a_1^2+a_2^2 +…+ a_(17) = 140 m then m is equal to

Let a_1,a_2,a_3…., a_49 be in A.P . Such that Sigma_(k=0)^(12) a_(4k+1)=416 and a_9+a_(43)=66 .If a_1^2+a_2^2 +…+ a_(17) = 140 m then m is equal to

If a_(1), a_(2), a_(3),…, a_(2k) are in A.P., prove that a_(1)^(2) - a_(2)^(2) + a_(3)^(2) - a_(4)^(2) +…+a_(2k-1)^(2) - a_(2k)^(2) = (k)/(2k-1)(a_(1)^(2) - a_(2k)^(2)) .

It a_(1) , a_(2) , a_(3) a_(4) be in G.P. then prove that (a_(2)-a_(3))^(2) + (a_(3) - a_(1))^(2) + (a_(4) -a_(2))^(2) = (a_(1)-a_(4))^(2)

It a_(1) , a_(2) , a_(3) a_(4) be in G.P. then prove that (a_(2)-a_(3))^(2) + (a_(3) - a_(1))^(2) + (a_(4) +a_(2))^(2) = (a_(1)-a_(4))^(2)

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in