Home
Class 11
MATHS
If a =i, b = omega and C= omega^2, then...

If `a =i, b = omega and C= omega^2`, then the value of determinant `|(a,a+b,a+b+c),(3a,4a + 3b,5a + 4b + 3c),(6a,9a+6b,11a+9a+6c)|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha=omega,b=omega^2,c=i , then the value of : |(a,a+2b,a+2b+3c),(3a,4a+6b,5a+7b+9c),(6a,9a+12b,11a+15b+18c)| is :

Using properties of determinants, prove that: |{:(a, a +b, a+b+c),(2a, 3a + 2b, 4a + 3b + 2c),(3a, 6a+3b, 10a + 6b + 3c):}| = a^(3)

Evaluate : |{:(a,a+b,a+b+c),(2a,3a+2b,4a+3b+2c),(3a,6a+3b,10a+6b+3c):}|

Suppose a,b,c epsilon R and Delta=|(a,a+b,a+b+c),(3a,4a+3b,5a+4b+3c),(6a,9a+6b,11a+9b+6c)| If Delta=11.728 then a=______

Prove that |{:(a,a+b,a=b+c),(2a,3a+2b,4a+3b+2c),(3a,6a+3b,10a+6b+3c):}|=a^3

Prove that |(a,a+b,a+b+c),(2a,3a+2b,4a+3b+2c),(3a,6a+3b,10a+6b+3c)| = a^(3)

Prove that |(a,a+b, a+b+c),(2a,3a+2b,4a+3b+2c),(3a,6a+3b,10a,6b+3c)| = a^3