Home
Class 12
MATHS
Statement-1: Area enclosed by the curve ...

Statement-1: Area enclosed by the curve `y= sqrtx^2,x` axis and lines `|x|=3` is zero. Statementー2 : For a continuous function `f,int_a^b |f(x)|dx=0` implies `int_a^b [f[f(x)]^2dx = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Property 5: If f(x) is a continuous function defined on [0;a] then int_(0)^(a)f(x)dx=int_(0)f(a-x)dx

If | int_a ^b f(x) dx| = int_a ^b |f(x)| dx, a lt b , then f(x) = 0 has

If |int_(a)^(b)f(x)dx|=int_(a)^(b)|f(x)|dx,a

Prove that \int_{0}^(2a) f(x) dx = \int_{0}^a [f(x) + f(2a-x)] dx

Property 8: If f(x) is a continuous function defined on [-a; a] then int_(-a) ^a f(x) dx = int_0 ^a {f(x) + f(-x)} dx

Statement - 1 : The value of the integral int_(pi/6)^(pi/3) dx/(1 + sqrttanx) is equal to pi/6 Statement-2 : int_a^b f(x) = int_a^b f(a + b - x) dx

Property 8: If f(x) is a continuous function defined on [-a;a] then int_(-a)^(a)f(x)dx=int_(0)^(a){f(x)+f(-x)}dx

Let f(a)>0 , and let f(x) be a non-decreasing continuous function in [a, b] . Then, 1/(b-a)int_a^bf (x) dx has the