Home
Class 12
MATHS
If f(x)=x+int0^1 t(x+t) f(t)dt, then fin...

If `f(x)=x+int_0^1 t(x+t) f(t)dt,` then find the value of the definite integral `int_0^1 f(x)dx.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_0^x (sint)/(t)dt,xgt0, then

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

If int_0^x(f(t))dt=x+int_x^1(t^2.f(t))dt+pi/4-1 , then the value of the integral int_-1^1(f(x))dx is equal to

If int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then the value of (23)/(2)f(0) is equal to

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt , then the value of (23)/(3)f(0) is equal to-