Home
Class 12
MATHS
(dy)/(dx)+1=e^(x+y)...

(dy)/(dx)+1=e^(x+y)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the general solutions of the following differential equations. (i) (dy)/(dx) = e^(x+y) (ii) (dy)/(dx) = e^(y-x) (iii) (dy)/(dx) = (xy+y)/(yx+x) (iv) y(1+x)dx+x(1+y)dy = 0

If e^(y)(x+1)=1, show that (dy)/(dx)=-e^(y)

(x-y)(1-(dy)/(dx))=e^(x)

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

Solution of the equation (dy)/(dx)=e^(x-y)(1-e^y) is

Solution of the equation (dy)/(dx)=e^(x-y)(1-e^y) is

(dy)/(dx)=e^(x-y)+1

(dy)/(dx) -y =e^(x ) " when" x=0 and y=1

Solve the equation (dy)/(dx)=1/x=(e^y)/(x^2)

Solve the equation (dy)/(dx)+1/x=(e^y)/(x^2)