Home
Class 12
MATHS
(ii) Let g:R rarr R be defined as g(x)=(...

(ii) Let `g:R rarr R` be defined as `g(x)=(x^(3)+e^(2x)-1)/(2)`. If `g(f(x))=x` while `f((e^(4)+7)/(2))=alpha` ,then find the number of solution(s) of the equation `||x-2|-3|-alpha=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g:R rarr R be defined as g(x)=(x^(3)+e^(2x)-1)/(2). If g(f(x))=x while f((e^(4)+7)/(2))=alpha ,then find the number of solution(s) of the equation |x-2|-3|-alpha=0

Let g:R rarr R be defined as g(x)=(e^(x)-e^(-x))/(2) If g(f(x))=x ,then the value of f((e^(100)-1)/(2e^(50)))

Let g, f:R rarr R be defined by g(x)=(x+2)/(3), f(x)=3x-2 . Write fog (x)

Let f:R rarr R be defined as f(x)=(2x-3 pi)^(2)+(4)/(3)x+cos x and g(x)=f'(x) , then find g(x)

Let f:R rarr R be defined as f(x)=x^(3)+3x^(2)+6x-5+4e^(2x) and g(x)=f^(-1)(x) ,then find g'(-1)

Let f:R rarr R defined by f(x)=x^(3)+e^(x/2) and let g(x)=f^(-1)(x) then the value of g'(1) is

Let f:R rarr R defined by f(x)=x^(3)+e^((x/2)) and let g(x)=f^(-1)(x) then the value of g'(1) is

Let f:R rarr R,f(x)=ln(x+sqrt(x^(2)+1)) and g:R rarr R,g(x)={x^((1)/(3)),x 1 then the number of real solutions of the equation,f^(-1)(x)=g(x) is