Home
Class 12
MATHS
Let bar a,bar b,bar c be three vectors ...

Let `bar a,bar b,bar c` be three vectors satistying `bar axx bar b =2bar a xx bar c,|bar a|=|bar c|=1bar b=4 and |bar b xx bar c|=sqrt15`. If `bar b-2bar c=lambda bar a` then `lambda` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let bar(a),bar(b),bar(c) be three vectors satistying bar(a)xxbar(b)=2bar(a)xxbar(c),|bar(a)|=|bar(c)|=1bar(b)=4 and |bar(b)xxbar(c)|=sqrt(15). If bar(b)-2bar(c)=lambdabar(a) then lambda is

bar a, bar b, bar c are three vectros, then prove that: (bar a xx bar b) xx bar c = (bar a. bar c) bar b-(bar b. bar c) bar a.

if bar a+2 bar b+3bar c=bar 0 then bar axxbar b+bar b xx bar c+bar cxx bara = lambda (bar b xx bar c) ,where lambda=

(d) answer ANY one question :1. bar a, bar b and bar c be three vectors such that bar a +bar b+ bar c =0 and |bar a|=1, |bar b|=4,|bar c |=2 . Evlautae bar a.bar b + bar b.bar c+bar c.bar a .

If bar(a),bar(b),bar(c) are three non zero vectors,then bar(a).bar(b)=bar(a).bar(c)rArr

For three vectors bar(a),bar(b) and bar( c ),bar(a)xx(bar(b)xx bar( c ))=(bar(a)xx bar(b))xx bar( c ) then

if bar(a),bar(b),bar(c) are any three vectors then prove that [bar(a),bar(b)+bar(c),bar(a)+bar(b)+bar(c)]=0

[bar(a)xx bar(b)" "bar(a)xx bar( c )" "bar(d)] = …………….

bar(a),bar(b) and bar( c ) are non zero vectors. |(bar(a)xx bar(b))*bar( c )|=|bar(a)||bar(b)||bar( c )| then ……………

If bar r=l(bar b xx bar c)+m(bar c xx bar a)+n(bar a xx bar b) and [bar a bar b bar c]=2 , then l+m+n is equal to