Home
Class 12
MATHS
Evaluate int0^(pi/4)(sqrt(tanx)+sqrt(cot...

Evaluate `int_0^(pi/4)(sqrt(tanx)+sqrt(cotx))dx`

Text Solution

Verified by Experts

`I = int (sqrt(sin x/cos x) + sqrt(cos x/sinx) ) dx`
`= int( sinx + cosx)/(sqrtcosx sqrtsinx) dx`
`= int(sin x + cos x)/(sqrt(cos x sin x))dx`
now , `sin x + cosx `
integral is `- cosx + sinx`
now, doing `(sin x - cos x)^2`
`= sin^2x + cos^2 x - 2 sinx cos x`
`(sin x -cos x)^2 = 1- 2 sinxcosx`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(sqrt(tanx)+sqrt(cotx))\ dx

int_(0)^(pi//4)(sqrt(tanx)+sqrt(cotx))dx equals

int_(0)^(pi//4)(sqrt(tanx)+sqrt(cotx))dx equals

Prove that: int_0^(pi/4)(sqrt(tanx)+sqrt(cotx))\ dx=sqrt(2)pi/2

int(sqrt(tanx) + sqrt(cotx))dx =

Evaluate the following integral: int_0^(pi//4)(sqrt(t a n x)+sqrt(cotx))dx

Evaluate the following integral: int_0^(pi//4)(sqrt(t a n x)+sqrt(cotx))dx

Prove that : int_(0)^(pi/4)(sqrt(tanx)+sqrt(cotx))dx=sqrt(2).pi/2 .

Prove that, int_(0)^((pi)/(2))(sqrt(tanx)+sqrt(cotx))dx=sqrt(2)pi

Evalualte : int (sqrt(tanx)+sqrt(cotx))dx .