Home
Class 12
MATHS
Let vecp and vecq any two othogonal vect...

Let `vecp and vecq` any two othogonal vectors of equal magnitude 4 each. Let `veca ,vecb and vecc` be any three vectors of lengths `7sqrt15 and 2sqrt33`, mutually perpendicular to each other. Then find the distance of the vector `(veca.vecp)vecp+(veca.vecq)vecq+(veca.(vecpxxvecq))(vecpxxvecq)+(vecb.vecp)vecp+(vecb.vecp)vecq+ (vecb.(vecb.vecq))(vecpxxvecq)+(vecc.vecp)vecp+(vecc.vecq)vecq+(vecc.(vecpxxvecq))(vecpxxvecq)` from the origin.

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca= vecP + vecq, vecP xx vecb = vec0 and vecq. Vecb =0 then prove that (vecbxx(veca xx vecb))/(vecb.vecb)=vecq

If veca= vecP + vecq, vecP xx vecb = vec0 and vecq. vecb =0 then prove that (vecbxx(veca xx vecb))/(vecb.vecb)=vecq

If veca= vecP + vecq, vecP xx vecb = vec0 and vecq. vecb =0 then prove that (vecbxx(veca xx vecb))/(vecb.vecb)=vecq

If veca= vecP + vecq, vecP xx vecb = vec0 and vecq. vecb =0 then prove that (vecbxx(veca xx vecb))/(vecb.vecb)=vecq

If veca= vecP + vecq, vecP xx vecb = vec0 and vecq. vecb =0 then prove that (vecbxx(veca xx vecb))/(vecb.vecb)=vecq

If the vectors 3vecP+vecq, 5vecP - 3vecq and 2 vecp+ vecq, 4 vecp - 2vecq are pairs of mutually perpendicular vectors, the find the angle between vectors vecp and vecq .