Home
Class 12
MATHS
int1/[xlogx[log(logx)]].dx...

`int1/[xlogx[log(logx)]].dx`

Text Solution

Verified by Experts

Let `I = int 1/(xlogx[log(logx)])`
Let `log(logx) = t`
`=>1/logx(1/x)dx = dt`
`:. I = int dt/t`
`=>I = logt+c`
`=>I = log[log(logx)]+c`
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

intdx/(xlogx[log(logx)]

Evaluate int 1/(xlogx log(logx)) dx

Knowledge Check

  • int(1)/(xlogx(2+logx))dx=

    A
    `(1)/(2)log|(2+logx)/(logx)|+c`
    B
    `(1)/(2)log|(logx)/(2+logx)|+c`
    C
    `(1)/(4)log|(2+logx)/(logx)|+c`
    D
    `(1)/(4)log|(logx)/(2+logx)|+c`
  • intdx/(x.logx. log(logx)) =

    A
    log [log (log x)]+C
    B
    log [x log x]
    C
    log (log x)
    D
    log[x log (log x)]
  • Similar Questions

    Explore conceptually related problems

    Evaluate int(1)/(xlogx[(log)])dx

    int(1)/(x(logx)log(logx))dx=

    Evaluate : int (1)/(x log x[log(logx)])dx, " on " (1, oo) .

    Evaluate: int1/(xlogx(2+logx) dx

    Evaluate: int1/(xlogx(2+logx)\ dx

    int(dx)/(x.logx.log(logx))=