Home
Class 12
MATHS
Let R0 denote the set of all non-zero...

Let `R_0` denote the set of all non-zero real numbers and let `A=R_0xxR_0` . If * is a binary operation on `A` defined by `(a ,\ b)*(c ,\ d)=(a c ,\ b d)` for all `(a ,\ b),\ (c ,\ d) in Adot` Show that * is both commutative and associative on `A` (ii) Find the identity element in `A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let R_0 denote the set of all non-zero real numbers and let A=R_0xxR_0 . If * is a binary operation on A defined by (a ,\ b)*(c ,\ d)=(a c ,\ b d) for all (a ,\ b),\ (c ,\ d) in Adot Find the identity element in A .

Let R_(0) denote the set of all non-zero real numbers and let A=R_(0)xx R_(0) .If * is a binary operation on A defined by (a,b)*(c,d)=(ac,bd) for all (a,b),(c,d)in A* show that * is both commutative and associative on A( ii) Find the identity element in A

Let A=Nuu{0}xxNuu{0} and let * be a binary operation on A defined by (a ,\ b) * (c ,\ d)=(a+c ,\ b+d) for all (a ,\ b),\ (c ,\ d) in Adot Show that * is commutative on Adot

Let A=NxxN , and let * be a binary operation on A defined by (a ,\ b)*(c ,\ d)=(a d+b c ,\ b d) for all (a ,\ b),\ (c ,\ d) in NxxNdot Show that: * is commutative on Adot (ii) * is associative on Adot

Let R_(0) denote the set of all non-zero real numbers and let A=R_(0)xx R_(0). If * is a binary operation on A defined by (a,b)*(c,d)=(ac,bd) for all (a,b),(c,d)in A. Find the invertible element in A.

Let A=Nuu{0}xxNuu{0} and let * be a binary operation on A defined by (a ,\ b)*(c ,\ d)=(a+c ,\ b+d) for all (a ,\ b),\ (c ,\ d) in Adot Show that * is associative on Adot

Let A=NxxN , and let * be a binary operation on A defined by (a , b)*(c , d)=(a d+b c , b d) for all (a , b), (c , d) in NxxNdot Show that: * is commutative on Adot (ii) * is associative on Adot

Let A=NxxN , and let * be a binary operation on A defined by (a ,\ b)*(c ,\ d)=(a d+b c ,\ b d) for all (a ,\ b),\ (c ,\ d) in NxxNdot Show that A has no identity element.

Let A=NxNa n d^(prime)*' be a binaryoperation on A defined by (a , b)*(C , d)=(a c , b d) for all a , b , c , d , in Ndot Show that '*' is commutative and associative binary operation on A.

Let A=NxNa n d^(prime)*' be a binaryoperation on A defined by (a , b)*(C , d)=(a c , b d) for all a , b , c , d , in Ndot Show that '*' is commutative and associative binary operation on A.