Home
Class 12
MATHS
If vec a is perpendicular to vec b and...

If ` vec a` is perpendicular to ` vec b` and ` vec r` is non-zero vector such that `p vec r+( vec rdot vec a) vec b= vec c ,` then ` vec r=` ` vec c/p-(( vec adot vec c) vec b)/(p^2)` (b) ` vec a/p-(( vec cdot vec b) vec a)/(p^2)` ` vec a/p-(( vec adot vec b) vec c)/(p^2)` (d) ` vec c/(p^2)-(( vec adot vec c) vec b)/p`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a is perpendicular to vec b and vec r is non-zero vector such that pvec r+(vec r*vec a)vec b=vec c then vec r=(vec c)/(p)-((vec a*vec c)vec b)/(p^(2))( b) (vec a)/(p)-((vec c*vec b)vec a)/(p^(2))(vec a)/(p)-((vec a*vec b)vec c)/(p^(2))( d) (vec c)/(p^(2))-((vec a*vec c)vec b)/(p)

The orthogonal projection of vec a on vec b is (( vec adot vec b) vec a)/(|"a"|^2) b. (( vec adot vec b) vec b)/(| vec b|^2) c. vec a/(| vec a|) d. vec b/(| vec b|)

The orthogonal projection of vec a\ on\ vec b is a. (( vec adot vec b) vec a)/(|"a"|^2) b. (( vec adot vec b) vec b)/(| vec b|^2) c. vec a/(| vec a|) d. vec b/(| vec b|)

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

For any three vectors vec a , vec b , vec c , prove that | vec a+ vec b+ vec c|^2=| vec a|^2+| vec b|^2+| vec c|^2+2( vec adot vec b+ vec bdot vec c+ vec cdot vec a)

If vec a , vec b , vec c are vectors such that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec c , vec a!= vec0, then show that vec b= vec c

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a ,\ vec b ,\ vec c are unit vectors such that vec a+ vec b+ vec c= vec0 find the value of vec adot vec b+ vec bdot vec c+ vec cdot vec adot'

If vec a ,\ vec b ,\ vec c are three vectors such that vec adot vec b= vec adot vec c then show that vec a=0\ or ,\ vec b=c\ or\ vec a_|_( vec b- vec c)dot