Home
Class 11
MATHS
Prove the following identity: (1-s in Ac...

Prove the following identity: `(1-s in AcosA)/(cos A(s e c A-cos e c A))dot(sin^2A-cos^2)/(sin^3A+cos^3A)=sinA`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identity: (1-sin AcosA)/(cos A(s e c A-cosec A))dot(sin^2A-cos^2A)/(sin^3 A+cos^3 A)=sin A

Prove the following identity: (1-s in A cos A)/(cos A(sec A-cos ecA))(sin^(2)A-cos^(2))/(sin^(3)A+cos^(3)A)=sin A

Prove the following identity: (sin^3A+cos^3A)/(sinA+cosA)+(sin^3A-cos^3A)/(sinA-cosA)=2

Prove the following identities: (sinA+cosA)/(sinA-cosA)+(sinA-cosA)/(sinA+cosA)=2/(sin^2A-cos^2A)=2/(2sin^2A-1)=2/(1-2cos^2A)

Prove the following identities : 1 - (sin^(2) A)/ (1 + cos A) = cos A

Prove the following identities : 1 - (sin^(2) A)/ (1 + cos A) = cos A

Prove the following identities: (sin+cos A)/(sin A-cos A)+(sin-cos A)/(sin A+cos A)=(2)/(sin^(2)A-cos^(2)A)=(2)/(2sin^(2)A-1)=(2)/(1-2cos^(2)A)

Prove the following identities: (cotA+cos e cA-1)/(cotA-cos e cA+1)=(1+cosA)/(sinA)

Prove the following identity: (sn^(3)A+cos^(3)A)/(s in A+1-tan A)+(sin^(3)-cos^(3)A)/(s in A-cos A)=2

Prove the following identities : (sin A + cos A)/ (sin A - cos A) + (sin A - cos A)/ (sin A + cos A) = (2)/ (2 sin^(2) A - 1)