Home
Class 14
MATHS
[" If "x(n)=(1-2+3-4+5-6+...-2n)/(sqrt(n...

[" If "x_(n)=(1-2+3-4+5-6+...-2n)/(sqrt(n^(2)+1)+sqrt(4n^(2)-1))" then "lim_(n rarr oo)],[" equal to "]

Promotional Banner

Similar Questions

Explore conceptually related problems

S_(n)=[(1)/(1+sqrt(n))+(1)/(2+sqrt(2n))+...+(1)/(n+sqrt(n^(2)))] then (lim_(n rarr oo)S_(n) is equal to (A)log2(B)log4 (C) log 8 (D) none of these

If quad S_(n)=(1)/(2n)+(1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-4))+...+(1)/(sqrt(3n_(2)^(2)+2n-1)),n in N then lim_(n rarr oo)S_(n) is equal to (pi)/(2)(b)2(c)1(d)(pi)/(6),n in N

lim_(n rarr oo)(sqrt(n^(2)+n)-sqrt(n^2+1))

lim_ (n rarr oo) (sqrt (n ^ (4) +1) -sqrt (n ^ (4) -1))

The value of lim_(n rarr oo)(sqrt(3n^(2)-1)-sqrt(2n^(2)-1))/(4n+3) is

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

lim_(n rarr oo) n(sqrt(n^(2)+6)-n) =

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]