Home
Class 12
MATHS
[f(x)={[ax^(2)+bx+c,,|x|>1],[x+1,,|x|<=1...

[f(x)={[ax^(2)+bx+c,,|x|>1],[x+1,,|x|<=1]." If "f(x)" is continuous for all values of "x," then; "],[[" (A) "b=1,a+c=0," (B) "b=0,a+c=2],[" (C) "b=1,a+c=1," (D) none of these "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={ax^(2)+bx+c,|x|>1x+1,|x|<=1 If f(x) is continuous for all values of x, then;

Define f(x)={{:(x^2+bx+c,","xlt1),(x,","xge1):} } .If f(x) is differentiable at x=1 , then (b-c)=

If f(x) =ax^(2) +bx + c, g(x)= -ax^(2) + bx +c " where " ac ne 0 " then " f(x).g(x)=0 has

Let f(x)=ax^(2)+bx+c, where a,b,c in R,a!=0. Suppose |f(x)|<=1,x in[0,1], then

Let f(x)=ax^(2)+bx+c, if f(-1) -1,f(3)<-4 and a!=0 then

If f(x)=ax^(2)+bx+c, f(-1) gt (1)/(2), f(1) lt -1 and f(-3)lt -(1)/(2) , then