Home
Class 12
MATHS
int((27)^(1+x)+9^(1-x))/(3^x)...

`int((27)^(1+x)+9^(1-x))/(3^x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(27e^(9x) + e^(12x) )^(1//3) dx is equal to a) (1//4)(27+ e^(3x) )^(1//3) + C b) (1//4) (27+ e^(3x ))^(2//3) +C c) (1//3) (27+ e^(3x) )^(4//3) + C d) (1//4)(27+ e^(3x) )^(4//3) +C

int_(-1)^(1) (1+x^(3))/(9-x^(2)) dx =

int_(-1)^(1) (1+x^(3))/(9-x^(2)) dx =

int_(1)^(2)(3x)/(9x^(2)-1)dx

int (27 e ^(9x) + e ^( 12 x )) ^(1//3) dx is equal to

Evaluate : lim_(x rarr0)(27^(x)-9^(x)-3^(x)+1)/(1-cos x)

Evulate Lt_(x to 0)(27^(x)-9^(x)-3^(x)+1)/(x^(2))

int(3^(x))/(sqrt(1-9^(x)))dx

If f(x)={(((exp{(x+3)ln27})^(1/27[x])-9)/(3^x-27), x lt 3), (lamda.((1-cos(x-3)))/((x-3)tan(x-3)), x gt 3):} is continuous at x = 3, then the value of 9lambda must be

if f(x)=((e^((x+3)ln27)^((x)/(27))-9))/((1-cos^(x)-27)/((x-3)tan(x-3))) if lim_(x rarr3)f(x) exist then lmbda is