Home
Class 12
PHYSICS
Electric flux through a surface of area ...

Electric flux through a surface of area ` 100m^2` lying in the xy plane is (in V-m) if `vec E= hat i+ sqrt 2hat j + sqrt 3 hat k-`.

A

` 100`

B

` 141.4`

C

` 17. 2`

D

` 200`

Text Solution

AI Generated Solution

The correct Answer is:
To find the electric flux through a surface of area \( 100 \, m^2 \) lying in the xy-plane due to the electric field \( \vec{E} = \hat{i} + \sqrt{2} \hat{j} + \sqrt{3} \hat{k} \), we can follow these steps: ### Step 1: Identify the Area Vector Since the surface is lying in the xy-plane, the area vector \( \vec{A} \) will be perpendicular to the surface. Therefore, the area vector can be expressed as: \[ \vec{A} = 100 \hat{k} \, m^2 \] ### Step 2: Write the Electric Field Vector The electric field vector is given as: \[ \vec{E} = \hat{i} + \sqrt{2} \hat{j} + \sqrt{3} \hat{k} \] ### Step 3: Calculate the Electric Flux The electric flux \( \Phi \) through the surface is given by the dot product of the electric field vector and the area vector: \[ \Phi = \vec{E} \cdot \vec{A} \] Substituting the values: \[ \Phi = (\hat{i} + \sqrt{2} \hat{j} + \sqrt{3} \hat{k}) \cdot (100 \hat{k}) \] ### Step 4: Compute the Dot Product To compute the dot product, we can use the property that the dot product of two vectors is the sum of the products of their corresponding components: \[ \Phi = 100 \cdot \left( \hat{i} \cdot \hat{k} + \sqrt{2} \hat{j} \cdot \hat{k} + \sqrt{3} \hat{k} \cdot \hat{k} \right) \] Since \( \hat{i} \cdot \hat{k} = 0 \) and \( \hat{j} \cdot \hat{k} = 0 \), we have: \[ \Phi = 100 \cdot 0 + 100 \cdot 0 + 100 \cdot \sqrt{3} = 100 \sqrt{3} \] ### Step 5: Calculate the Numerical Value Now, we can calculate the numerical value of \( \sqrt{3} \): \[ \sqrt{3} \approx 1.732 \] Thus, \[ \Phi = 100 \cdot 1.732 = 173.2 \, V \cdot m \] ### Final Result The electric flux through the surface is: \[ \Phi = 173.2 \, V \cdot m \]

To find the electric flux through a surface of area \( 100 \, m^2 \) lying in the xy-plane due to the electric field \( \vec{E} = \hat{i} + \sqrt{2} \hat{j} + \sqrt{3} \hat{k} \), we can follow these steps: ### Step 1: Identify the Area Vector Since the surface is lying in the xy-plane, the area vector \( \vec{A} \) will be perpendicular to the surface. Therefore, the area vector can be expressed as: \[ \vec{A} = 100 \hat{k} \, m^2 \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Electric flux through a surface of area 100 m^(2) lying in the plane in the xy plane is (in V-m) if E=hat(i)sqrt(2)hat(j)+sqrt(3)hat(k) :

Find out the electric flux through an area 10 m^(2) lying in XY plane due to a electric field vec(E)=2hat(i)-10 hat(j)+5hat(k) .

An electric field is given by (6 hat i 5 hat j 3 hat k) N/C. The electric flux through a surface area 30 hat i m^2 lying in YZ-plane (in SI unit) is :

If side vec AB of an equilateral trangle ABC lying in the x-y plane 3hat i ,then side vec CB can be -(3)/(2)(hat i-sqrt(3)hat j) b.-(3)/(2)(hat i-sqrt(3)hat j) c.-(3)/(2)(hat i+sqrt(3)hat j) d.(3)/(2)(hat i+sqrt(3)hat j)

If the electric field given by (5hat(i)+4hat(j)+9hat(k)) , then the electric flux through a surface of area 20 unit lying in the yz - plane will be

If the electric field is given by vec(E) = 8 hat(i) + 4 hat(j) + 3 hat(k) NC^(-1) , calculate the electric flux through a surface of area 100 m^(2) lying in X-Y plane.

If a unit vector hat a in the plane of vec b=2 hato+ hat j& vec c= hat i- hat j+ hat k is such that vec a vec d where vec d= hat j+2 hat l , then hat a is ( hat i+ hat j+ hat k)/(sqrt(3)) (b) ( hat i- hat j+ hat k)/(sqrt(3)) (2 hat i+ hat j)/(sqrt(5)) (d) (2 hat i- hat j)/(sqrt(5))

A unit vector parallel to the intersection of the planes vec rdot( hat i- hat j+ hat k)=5a n d vec rdot(2 hat i+ hat j-3 hat k)=4 a. (2 hat i+5 hat j-3 hat k)/(sqrt(38)) b. (-2 hat i+5 hat j-3 hat k)/(sqrt(38)) c. (2 hat i+5 hat j-3 hat k)/(sqrt(38)) d. (-2 hat i-5 hat j-3 hat k)/(sqrt(38))

Find the equation of the plane through the point 2 hat i+ hat j- hat k and passing through the line of intersection of the plane vec rdot(( hat i+3 hat j- hat k)=0\ a n d\ vec rdot(( hat j+2 hat k)=0.