Home
Class 12
PHYSICS
A thin wire of length 2m is perpendicula...

A thin wire of length `2m` is perpendicular to the `xy` plane. It is moved with velocity
`vec(V)=(2hat(i)+3hat(j)+hat(k))m//s` through a region of magnetic induction `vec(B)=(hat(i)+2hat(j))Wb//m^(2)`. Then potential difference induced between the ends of the wire:

A

`2`Volts

B

`4` volts

C

`0` volt

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

`e=-(vec(V)xxvec(B)).vec(l)`
`vec(V)xxvec(B)=(2hat(i)+3hat(j)+hat(k))xx(hat(i)+2hat(j))=-2hat(i)-hat(j)+hat(k)`
`e=-(vec(V)xxvec(B)).vec(l)=(2hat(i)-hat(j)+hat(k)).2hat(k)=2` volt
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(F) = (60 hat(i) + 15hat(j) - 3hat(k)) and vec(v) = (2hat(i) - 4hat(j) + 5hat(k))m//s , then instantaneous power is :

Find the sum of the vectors vec(a)=(hat(i)-3hat(k)), vec(b)=(2hat(j)-hat(k)) and vec(c)=(2hat(i)-3hat(j)+2hat(k)) .

What is the projection of vec(a)=(2hat(i)-hat(j)+hat(k)) on vec(b)=(hat(i)-2hat(j)+hat(k))?

A wire of length 4 m placed normal to the plane magnetic field of (2 hat (i) + 4 hat (j)) Tesla is moving with a velocity (4 hat (i)+ 6 hat (j)+ 8 hat (k)) m/s. The emf induced across the ends of the wire will be __

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

If vec(F ) = (60 hat(i) + 15 hat(j) - 3 hat(k)) N and vec(V) = (2 hat(i) - 4 hat(j) + 5 hat(k)) m/s, then instantaneous power is:

If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k)) then the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) is

An alpha particle moving with a velocity vec(v)_(1)=2hat(i)m//s is a uniform magnetic field experiences a force vec(F)_(1)=-4e(hat(j)-hat(k))N . When the particle moves with a velocity vec(v)_(2)=hat(j)m//s , then the force experienced by it is vec(F)_(2)=2e(hat(i)-hat(k))N . The magnetic induction vec(B) at that point is :

Find [vec(a)vec(b)vec(c )] if vec(a)=vec(i)-2hat(j)+3hat(k), vec(b)=2hat(i)-3hat(j)+hat(k) and vec(c )=3hat(i)+hat(j)-2hat(k) .