Home
Class 12
MATHS
[" If "y=1+(x(1))/(x-x(1))+(x(2)*x)/((x-...

[" If "y=1+(x_(1))/(x-x_(1))+(x_(2)*x)/((x-x_(1))(x-x_(2)))+(x_(3)*x^(2))/((x-x_(1))(x-x_(2))(x-x_(3)))+........." upto "(n+1)" terms then prove "],[" hat "(dy)/(dx)=(y)/(x)[(x_(1))/(x_(1)-x)+(x_(2))/(x_(2)-x)+(x_(3))/(x_(3)-x)+......+(x_(n))/(x_(n)-x)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=1+(x_(1))/(x-x_(1))+(x_(2))/((x-x_(1))(x_(2)))+x_(3)(x^(2))/((x-x_(1))(x-x_(2))(x_(x)-3))(dy)/(dx)=(y)/(x)((x_(1))/(x_(1)-x)+(x_(2))/(x_(2)-x)+......+(x_(n))/(x_(n)-x))

If x_(1),x_(2),x_(3),.......x_(n) are the roots of x^(n)+ax+b=0, then the value of (x_(1)-x_(2))(x_(1)-x_(3))(x_(1)-x_(4))......(x_(1)x_(n)) is equal to

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+ . . .+(x^(n))/(n!) , prove that (dy)/(dx)+(x^(n))/(n!)=y

If x_(1),x_(2),x_(3)...x_(n) are in H.P,then prove that x_(1)x_(2)+x_(2)x_(3)+xx x-3x_(4)+...+x_(n-1)x_(n)=(n-1)x_(1)x_(n)

If S_(n)=(x+y)+(x^(2)+xy+y^(2))+(x^(3)+x^(2)y+y^(2)x+y^(3))+…n terms then prove that (x-y)S_(n)=[(x^(2)(x^(n)-1))/(x-1)-(y^(2)y^(n)-1)/(y-1)] .

Value of |{:(1+x_(1),1+x_(1)x,1+x_(1)x^(2)),(1+x_(2),1+x_(2)x,1+x_(2)x^(2)),(1+x_(3),1+x_(3)x,1+x_(3)x^(2)):}| depends upon

Value of |{:(1+x_(1),1+x_(1)x,1+x_(1)x^(2)),(1+x_(2),1+x_(2)x,1+x_(2)x^(2)),(1+x_(3),1+x_(3)x,1+x_(3)x^(2)):}| depends upon

Prove that: |[1+x_(1),x_(2),x_(3)],[x_(1),1+x_(2),x_(3)],[x_(1),x_(2),1+x_(3)]|=1+x_(1)+x_(2)+x_(3)