Home
Class 11
MATHS
" (iy) "(1)/(2)cos^(-1)x=sin^(-1)sqrt((1...

" (iy) "(1)/(2)cos^(-1)x=sin^(-1)sqrt((1-x)/(2))=cos^(-1)sqrt((1+x)/(2))=tan^(-1)(sqrt(1-x^(2)))/(1+x)quad [14],[" (i) "cot^(-1)x+]

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)x= 2 sin ^(-1) sqrt((1-x)/(2))=2 cos ^(-1)""sqrt((1+x)/(2))=2tan^(-1)""(sqrt(1-x^(2)))/(1+x)

Prove that 1/2cos^-1x=sin^-1sqrt((1-x)/2)=cos^-1sqrt((1+x)/2) .

y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))

tan^(-1)(sqrt((a-x)/(a+x)))=(1)/(2)cos^(-1)((x)/(a))

y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))

int(tan(cos^(-1)x)+cot(sin^(-1)x))/(sqrt(1-x^(2)))dx=

show that , (1) /(2) tan ^(-1) x = cos^(-1) sqrt((1+sqrt(1+x^(2)))/(2sqrt(1+x^(2)))).

tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))]=(pi)/(4)+(1)/(2)cos^(-1)x^(2)

If -1