Home
Class 12
MATHS
If A=d i ag(abc), show that A^n=d i ag(a...

If `A=d i ag(abc),` show that `A^n=d i ag(a^nb^nc^n)` for all positive integer `ndot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=diag(abc), show that A^(n)=diag(a^(n)b^(n)c^(n)) for all positive integer n.

If A=diag(abc), show that A^(n)=diag(a^(n)b^(n)c^(n)) for all positive integer n .

If A=d i ag\ (a\ \ b\ \ c) , show that A^n=d i ag\ (a^n\ \ b^n\ \ c^n) for all positive integer n .

Show that P(n,n)=P(n,n-1) "For all positive integers."

If [[1,1],[0,1]] , prove that A^n=[[1,n],[0,1]] for all positive integers ndot

Using mathematical induction prove that d(x^n)/dx = nx^(n-1) for all positive integers n.

Using mathematical induction prove that d/(dx)(x^n)=n x^(n-1) for all positive integers n.

Using mathematical induction prove that (d)/(dx) (x^(n))= n x^(n-1) for all positive integers n.

Using mathematical induction prove that d/(d x)(x^n)=n x^(n-1) for all positive integers n .

Using mathematical induction prove that (d)/(dx)(x^(n))=nx^(n-1) for all positive integers n.