Home
Class 14
MATHS
-sqrt(3n^(2)-2sqrt(2n)-2sqrt(3))=0...

-sqrt(3n^(2)-2sqrt(2n)-2sqrt(3))=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If both a\ a n d\ b are rational numbers, find the values of a\ a n d\ b in each of the following equalities: (sqrt(2)+\ sqrt(3))/(3sqrt(2\ )-\ 2sqrt(3))=a-b\ sqrt(6)

If A >0,\ B >0\ a n d\ A+B=\ pi/6 , then the minimum value of t a n A+t a n B is: 2-sqrt(3) b. 4-2sqrt(3) c. sqrt(3)-sqrt(2) d. 2/(sqrt(3))

If A >0,\ B >0\ a n d\ A+B=\ pi/6 , then the minimum value of t a n A+t a n B is: 2-sqrt(3) b. 4-2sqrt(3) c. sqrt(3)-sqrt(2) d. 2/(sqrt(3))

lim_(n rarr oo)((sqrt(n+3)-sqrt(n+2))/(sqrt(n+2)-sqrt(n+1)))

Evaluate : lim_(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2))+(sqrt(n))/(sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+.......+(1)/(49n)]

Evaluate : lim_(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2))+(sqrt(n))/(sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+.......+(1)/(49n)]

lim_(n rarr4)(sqrt(2n+1)-3)/(sqrt(n-1)-sqrt(2))

The value of lim_(n rarr oo)(sqrt(3n^(2)-1)-sqrt(2n^(2)-1))/(4n+3) is

N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(5)+2)-sqrt(3-2sqrt(2)) then the value of N

N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(5)+2)-sqrt(3-2sqrt(2)) then the value of N