Home
Class 12
MATHS
int0^(pi/2)sin2xlogtanx dx is equal to...

`int_0^(pi/2)sin2xlogtanx dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/2)sin2x log(tanx)dx

int_0^(pi/2)sin4xcotx dx is equal to -pi/2 (2) 0 (3) pi/2 (4) pi

int_0^(pi/2)sin4xcotx dx is equal to -pi/2 (2) 0 (3) pi/2 (4) pi

If A=int_(0)^( pi)(cos x)/((x+2)^(2))dx, then int_(0)^( pi/2)(sin2x)/(x+1)dx is equal to

If A=int_(0)^(pi)(cosx)/(x+2)^(2)dx , then int_(0)^(pi//2)(sin2x)/(x+1)dx is equal to

int_0^(pi/2) sin x dx

int_(0)^(pi//2) x sin x dx is equal to

The value of int_(0)^((pi)/(2))x sin x dx is equal to -

If n=2m+1,m in N uu {0}, then int_0^(pi/2)(sin nx)/(sin x) dx is equal to (i) pi (ii) pi/2 (iii) pi/4 (iv) none of these