Home
Class 12
MATHS
int0^3(3x+1)/(x^2+9)dx = (pi^)/(12)+log(...

`int_0^3(3x+1)/(x^2+9)dx` = `(pi^)/(12)+log(2sqrt(2))` (b) `(pi^)/2+log(2sqrt(2))` (c) `(pi^)/6+log(2sqrt(2))` (d) `(pi^)/3+log(2sqrt(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(3)(3x+1)/(x^(2)+9)dx=(pi)/(12)+log(2sqrt(2))(b)(pi)/(2)+log(2sqrt(2))quad (c)(pi)/(6)+log(2sqrt(2))(d)(pi)/(3)+log(2sqrt(2))

int_(-(pi)/(2))^((pi)/(2))sin{log(x+sqrt(x^(2)+1))}dx

int_(0)^((pi)/(2))(xdx)/(sinx+cosx)=(pi)/(2sqrt(2))log(sqrt(2)+1)

If log_(sqrt((pi)/(2)))(log_(9)(sqrt(3)+sqrt(12)))=2

int_(0)^(1)cot^(-1)(1-x+x^(2))dx=(1)(pi)/(2)-log2(2)(pi)/(2)+log2(3)pi-log2(4)pi+log2

int_(0)^((pi)/(2))(dx)/((1-2x^(2))sqrt(1-x^(2)))=(1)/(2)log(2+sqrt(3))

int_(0)^((pi)/(2))(dx)/((1-2x^(2))sqrt(1-x^(2)))=(1)/(2)log(2+sqrt(3))

int_(0)^((pi)/(2))log(sinx)dx=int_(0)^((pi)/(2))log(cosx)dx=(pi)/(2)log.(1)/(2)

int_(0)^((pi)/(2))log(sinx)dx=int_(0)^((pi)/(2))log(cosx)dx=(pi)/(2)log.(1)/(2)

int_0^(4/pi) (3x^2sin(1/x)-xcos(1/x))dx= (A) (8sqrt(2))/pi^3 (B) (32sqrt(2))/pi^3 (C) (24sqrt(2))/pi^3 (D) sqrt(2048)/pi^3