Home
Class 12
MATHS
If In=int0^(pi/4)tan^n theta then I8+I6...

If `I_n=int_0^(pi/4)tan^n theta` then `I_8+I_6` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

I_n= int_0^(pi/4) tan^(n)xdx then I_3+I_5 is

If I_(n) = int_0^(pi/4) tan^(n) theta d theta , then I_(8)+I_(6) equals

If I_(n)=int_(0)^(pi//4) tan^(n)theta d theta , then I_(8)+I_(6) equals

If I_n = int_0^(pi//4) tan^n theta d theta , then for any +ve integer n, the value of n(I_(n - 1) + I_(n + 1)) is :

if I_n=int_0^(pi/4)tan^ntheta.d theta,then n in N,n(I_(n-1)+I_(n+1)) equals

If I_(n)=int_(0)^((pi)/(4))tan^(n)thetad theta , for any positive integer n, then the value of n(I_(n-1)+I_(n+1)) is -

If I_(n) = int _(0)^(pi//4) tan^(n) theta " " d theta, "then "I_(8)+I_(6)=

If I_(n) = int _(0)^(pi//4) tan^(n) theta " " d theta, "then "I_(8)+I_(6)=

If I_(n)=int_(0)^(pi//4)tan^(n)x dx, then 7(I_(6)+I_(8))=