Home
Class 11
MATHS
[qquad f(x-a)^(2)+(y-b)^(2)=c^(2)," for ...

[qquad f(x-a)^(2)+(y-b)^(2)=c^(2)," for some "c>0," prove that "],[qquad [([1+((dy)/(dx))^(2)]^((3)/(2)))/((d^(2)y)/(dx^(2)))]],[" andent independent of "a" and "b" ."]

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x-a)^(2) + (y-b)^(2) = c^(2) , for some c gt 0 , prove that ([1 + ((dy)/(dx))^(2)]^((3)/(2)))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

If (x-a)^(2)+(y-b)^(2)=c^(2) for some for some prove that prove that ([1+((dy)/(dx))^(2)]^((3)/(2)))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

If (x-a)^(2)+(y-b)^(2)=c^(2) , for some c gt 0 , prove that ([1+((dy)/(dx))^(2)]^(3/2))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

If (x-a)^(2)+(y-b)^(2)=c^(2) , for some c gt 0 , prove that ([1+((dy)/(dx))^(2)]^(3/2))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

If (x-a)^(2)+(y-b)^(2)=c^(2) , for some c gt 0 , prove that ([1+((dy)/(dx))^(2)]^(3/2))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

If (x-a)^(2)+(y-b)^(2)=c^(2) , for some c gt 0 , prove that ([1+((dy)/(dx))^(2)]^(3/2))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

If (x-a)^(2)+(y-b)^(2)=c^(2), for some c>0[1+((dy)/(dx))^(2)]^((3)/(2)) provethat ([1+((dy)/(dx))^(2)]^((3)/(2)))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

If (x-a)^2+(y-b)^2=c^2, for some c >0, prove that ([1+((dy)/(dx))^2]^(3/2))/((d^2y)/(dx^2)) is a constant independent of a and b .