Home
Class 12
MATHS
Number of ordered pair (alpha, beta), sa...

Number of ordered pair `(alpha, beta)`, satisfying the condition `alpha^8 +beta^8 = 8 alpha beta-6` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta satisfying the equation sin alpha+sin beta=sqrt(3)(cos alpha-cos beta), then

The number of ordered pairs (alpha,beta) , where alpha,beta in(-pi,pi) satisfying cos(alpha-beta)=1 and cos(alpha+beta)=(1)/(e) is

The number of ordered pairs ( alpha, beta ) ,where alpha, beta in (-pi, pi) satisfying cos(alpha-beta) =1 "and" cos(alpha+beta) = (1)/(sqrt2) is :

The number of ordered pairs ( alpha, beta ) ,where alpha, beta in (-pi, pi) satisfying cos(alpha-beta) =1 "and" cos(alpha+beta) = (1)/(sqrt2) is :

The number of ordered pairs (alpha,beta) , where alpha,betain(-pi,pi) satisfying cos(alpha-beta)=1 andcos(alpha-beta)=1 and cos(alpha+beta)=1/e is

Find the values of alpha and beta[ 0 lt alpha, beta lt (pi)/(2)] satisfying the equation cos alpha cos beta cos (alpha+ beta)=-(1)/(8)

The value of 2alpha+beta(0ltalpha, beta lt (pi)/(2)) , satisfying the equation cos alpha cos beta cos (alpha+beta)=-(1)/(8) is equal to

The value of 2alpha+beta(0ltalpha, beta lt (pi)/(2)) , satisfying the equation cos alpha cos beta cos (alpha+beta)=-(1)/(8) is equal to

If alpha and beta satisfying 2 sec2 alpha = tan beta + cot beta , then alpha+beta =