Home
Class 12
MATHS
Prove that (veca+ vecb)*( veca+ vecb)=|v...

Prove that `(veca+ vecb)*( veca+ vecb)=|veca|^2+| vecb|^2`, if and only if `veca , vecb`are perpendicular, given ` veca!= vec0, vecb!= vec0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (veca+vecb) cdot (veca+vecb) = |veca|^2 + |vecb|^2 , if and only if veca, vecb are perpendicular, given veca ne vec0, vecb ne vec0 .

Prove that (veca+vecb)*(veca+vecb)=|veca|^(2)+|vecb|^(2) , if and only if veca,vecb are perpendicular , given vecanevec0,vecbnevec0 .

Prove that (veca+vecb).(veca+vecb)=|veca|^2+|b|^2 if and only if veca,vecb are perpendicular, given veca!=vec0"and"vecb!=0 .

Prove that : veca*(vecb+vec c)xx(veca+2vecb+3vec c)=[veca vecb vec c]

Prove that veca*(vecb+vec c)xx (veca+3vecb+2vec c)=-(veca vecb vecc )

If veca.vecb=0 and vecaxxvecb=0 prove that veca=vec0 or vecb=vec0 .

If |veca+vecb|=|veca-vecb|, (veca,vecb!=vec0) show that the vectors veca and vecb are perpendicular to each other.

If |veca+vecb|=|veca-vecb|, (veca,vecb!=vec0) show that the vectors veca and vecb are perpendicular to each other.